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PROGRAM OF THE CONFERENCE

TUESDAY – JULY 8
Morning session

Room C215
Chairman: O. Zindulka

9:00–9:10 Opening
9:10–10:00 K. Falconer Projections of Fractals Old and New

10:10–10:30 A. Máthé Purely unrectifiable sets are uniformly purely unrectifiable
COFFEE BREAK
11:00–11:20 L. Moonens Lebesgue averages on rectangles
11:30–11:50 E. Liflyand Amalgam type spaces and integrability

of the Fourier transforms
12:00–12:20 T. Natkaniec Ideal convergence of sequences of quasi-continuous functions

Afternoon sessions

Room C215
Chairman: J. Spurný
14:30–14:50 A. Nawrocki On some classes of generalized almost periodic functions
15:00–15:20 D. Bugajewska On lower bounded Λ-variation and its applications
15:30–15:50 P. Das On IK-Cauchy functions
COFFEE BREAK
16:20–16:40 I. Kupka Topology can say more
16:50–17:10 S. Kowalczyk On continuity in generalized topology
17:20–17:40 R. Zdunczyk Simple systems and closure operators
17:50–18:10 M. Walczyńska Embeddability properties of metrizable scattered spaces

Room C217
Chairman: A. Nekvinda
14:30–14:50 G. Horbaczewska On microscopic sets with respect to sequences of functions
15:00–15:20 P. Kalemba On an ideal related to the ideal (v0)
15:30–15:50 M. Filipczak On algebraic properties of supports of

probability Bernoulli-like measures
COFFEE BREAK
16:20–16:40 R. Wiertelak Comparison of density topologies generated by sequences

of intervals tending to zero
16:50–17:10 W. Wilczynski Density points, non-canonical form
17:20–17:40 M. Plotnikov Q-measures and uniqueness sets for Haar series
17:50–18:10 J. Plotnikova Haar series, martingales, and uniqueness theorems
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WEDNESDAY – JULY 9
Morning session

Room C215
Chairman: P. Reardon

9:00–9:50 J. Schmeling Multifractal analysis of standard and
multiple ergodic averages

10:00–10:20 A. Nicolau Oscillation of Hölder continuous functions
COFFEE BREAK
10:50–11:10 E. D’Aniello Attractors for iterated function schemes I
11:20–11:40 T. H. Steele Attractors for iterated function schemes II
11:50–12:10 P. Eliaš Families of sets and functions related to

the uniform convergence of characters

Afternoon sessions

Room C215
Chairman: A. Alikhani-Koopaei
14:30–14:50 P. Sworowski On path McShane integral
15:00–15:20 L. Loukotová About contingent, differentiability and Lipschitz mappings
15:30–15:50 M. Turowska About the contingent
COFFEE BREAK
Chairman: T. Natkaniec
16:20–16:40 J. Wódka Products of Światkowski and quasi-continuous functions
16:50–17:10 G. Kwiecińska On the Caratheodory superposition of multifunctions

and an existence theorem
17:20–17:40 E. Mainka-Niemczyk On series expansion of sine and cosine families
17:50–18:10 V. Olevskii Localization and completeness in L2(R)

Room C217
Chairman: J. Hejduk
14:30–14:50 G. A. Monteiro Functions of bounded semivariation: a survey
15:00–15:20 M. Bienias Algebraic structures in some sets of functions
15:30–15:50 J. Kawabe Bounded convergence theorem for

nonlinear integral functionals
COFFEE BREAK
Chairman: P. Musial
16:20–16:40 K. Musiał Convergence in measure of non-measurable functions
16:50–17:10 G. Oniani On the convergence of double Fourier-Haar series

by dilations of a set
17:20–17:40 J. Šupina Ideal version of QN-space can be trivial
17:50–18:10 F. Strobin Spaceability of the set of continuous injections from B`p

into `p with nowhere continuous inverses
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THURSDAY – JULY 10
Morning session

Room C215
Chairman: L. Moonens

9:00–9:20 T. Keleti Decomposing the real line into Borel sets closed under addition
9:30–9:50 J. Spurný Borel sets and functions in topological spaces

10:00–10:20 P. Allaart Zero sets and maximum sets of randomized Takagi functions
COFFEE BREAK
10:50–11:10 J. Hejduk On topologies generated by sequences of

intervals tending to zero
11:20–11:40 L. Zajíček Differences of two semiconvex functions
11:50–12:10 J. P. Fenecios On a new characterization of Baire-1 functions

FRIDAY – JULY 11
Morning session

Room C215
Chairman: M. Balcerzak

9:00–9:50 P. Dodos Approximations of random variables
10:00–10:20 A. Riviere Hausdorff dimension and derivatives of nondecreasing functions
COFFEE BREAK
10:50–11:10 A. Bartoszewicz Topological and measure properties of some self-similar sets
11:20–11:40 D. Pokorný Traces of separately convex functions
11:50–12:10 P. Reardon Embeddings of the Ellentuck, dual Ellentuck

and Hechler spaces

Afternoon session

Room C215
Chairman: P. Allaart
14:30–14:50 J. Doleželová Distributional chaos – recent results
15:00–15:20 Z. Kočan On some properties of dynamical systems

on one-dimensional spaces
15:30–15:50 L. Rucká Waiting times in a queue with m servers
COFFEE BREAK
Chairman: P. Holický
16:20–16:40 M. Matejdes Graph and pointwise upper Kuratowski limit

of multifunctions
16:50–17:10 B. Novotný Cardinal invariants of the Vietoris topology, fine topology

and the topology of uniform convergence on C(X)
17:20–17:40 J. Borsík Strongly quasicontinuous functions
17:50–18:10 M. Rmoutil Proximinal subspaces and norm-attaining functionals
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SATURDAY – JULY 12
Morning session

Room C215
Chairman: A. Nicolau

9:00–9:50 E. Matheron Invariant measures for linear operators
10:00–10:20 P. Musial A Stieltjes type extension of the Lr Peron integral
COFFEE BREAK
10:50–11:10 F. Tulone Multiple Kurzweil-Henstock and Perron dyadic integrals
11:20–11:40 V. Skvortsov On M -sets and U -sets for system of characters of

zero-dimensional compact groups
11:50–12:10 M. Morales Some peculiarities about Henstock-Kurzweil integrable

functions space and the Fourier Transform

Afternoon session

Room C215
Chairman: T. O’Neil
14:30–14:50 T. Filipczak Algebraic differences of binary sequences
15:00–15:20 R. Filipow Ideal convergence of sequences of functions
15:30–15:50 S. Głąb Large free subgroups of automorphisms groups

of ultrahomogeneous spaces
COFFEE BREAK
Chairman: E. D’Aniello
16:20–16:40 Š. Franěk Relationship between regulated function of two real variables

and sequence of regulated functions of one real variable
16:50–17:10 D. Seco Complete systems of inner functions in L∞

17:20–17:40 D. Fraňková Regulated functions of multiple variables
17:50–18:10 M. Balcerzak Uniform openness of multiplication in Banach spaces Lp
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ABSTRACTS

Pandelis Dodos Approximations of random variables

We will present some methods of approximation of a given random variable by “simpler” (and
consequently, more manageable) functions. We will also discuss applications.

Kenneth Falconer Projections of Fractals Old and New

Sixty years ago, in 1954, John Marstrand published a paper entitled ‘Some fundamental geo-
metrical properties of plane sets of fractional dimension’ which relates the Hausdorff dimension
of a set in the plane to the dimensions of its orthogonal projections onto lines. Arguably, this
paper marked the start of the area now known as ‘Fractal Geometry’. Starting from Marstrand’s
original theorem, the talk will survey some of the numerous generalisations and specialisations
that continue to attract a great deal of interest today.

Etienne Matheron Invariant measures for linear operators

A basic question in topological dynamics is to determine whether a given continuous map acting
on a reasonable topological space admits interesting invariant probability measures. In this talk,
I will address this problem in the specific setting of linear dynamics, i.e. when the transformation
is a continuous linear operator acting on a separable Banach space (or, more generally, a Polish
topological vector space).

Jörg Schmeling Multifractal analysis of standard and multiple ergodic averages

Given a dynamical system and an observable classical multifractal analysis studies the level
sets of the time averages of this observable. In many but by far not all situations this is well
understood. In “ideal” situations all fractal dimensions coincide and are also attained by the
maximal dimension of an invariant measure sitting on these level sets. Multiple ergodic averages
arise if one considers the averages of the product of several observables in different time scaling.
This question is much less understood. Many new pheomena occur. In particular, the different
notions of fractal dimensions give different values, the maximal dimension of invariant measure
may be substantially smaller and unexpected phase transitions are present. We will give a survey
of the classical theory and introduce some new concepts to study multiple averages. The second
part is based on joint work with Fan, Peres, Seuret, Solomyak and Wu.
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Pieter Allaart Zero sets and maximum sets of randomized Takagi functions

Takagi’s continuous but nowhere differentiable function is defined by

T (x) =
∞∑
n=0

1

2n
φ(2nx),

where φ(x) is the distance from x to the nearest integer. In this talk we examine two natural sche-
mes for multiplying the terms in the above series by random signs (while preserving continuity
of the limit function). Several results will be presented regarding the set of maximum points and
the zero set of the resulting randomized Takagi function. These sets tend to be random fractals,
and their almost-sure Hausdorff dimension is of particular interest. This topic offers many op-
portunities for further research, so the talk will end with a list of open problems.

Marek Balcerzak Uniform openness of multiplication in Banach spaces Lp

It is known that the counterpart of the Banach Openness Principle is not valid for bilinear conti-
nuous surjections. The respective counterexamples are due to Cohen, Horovitz, Rudin and others.
Also, multiplication from C[0, 1]×C[0, 1] to C[0, 1] is not an open mapping. However, we have
proved in [2] that, for any measure space (X,Σ, µ), the multiplication from Lp ×Lq to L1 (with
p, q ∈ [0,∞], 1/p+ 1/q = 1) is an open mapping. Moreover, it is a uniformly open mapping [1].
Another result of [1] states that, if (X,Σ, µ) is a topological measure space and X is σ-compact,
then the multiplication from L1 × L0

∞ to L1 is uniformly open where L0
∞ stands for the space

of all members of L∞ vanishing at ∞. We obtain, as corollaries, the respective results for the
sequence spaces `p.

REFERENCES

[1] M. Balcerzak, A. Majchrzycki, F. Strobin, Uniform openness of multiplication in Banach spaces Lp, submit-
ted.

[2] M. Balcerzak, A. Majchrzycki, A. Wachowicz, Openness of multiplication in some function spaces, Taiwa-
nese J. Math., 17 (2013), 1115–1126.

Artur Bartoszewicz Topological and measure properties of some self-similar sets
Joint work with Taras Banakh, Małgorzata Filipczak, Emilia Szymonik.

Given a finite subset Σ ⊂ R and a positive real number q < 1 we study topological and measure-
theoretic properties of the self-similar set K(Σ; q) =

{∑∞
n=0 anq

n : (an)n∈ω ∈ Σω
}

, which is
the unique compact solution of the equation K = Σ + qK. The obtained results are applied to
studying partial sumsets E(x) =

{∑∞
n=0 xnεn : (εn)n∈ω ∈ {0, 1}ω

}
of some (multigeometric)

sequences x = (xn)n∈ω.
For a a finite subset Σ ⊂ R of cardinality |Σ| ≥ 2, we will write it as Σ = {σ1, . . . , σs} for

real numbers σ1 < · · · < σs. Then we denote

diam(Σ) = σs − σ1, δ(Σ) = min
i<s

(σi+1 − σi), and ∆(Σ) = max
i<s

(σi+1 − σi).
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Also put

I(Σ) =
∆(Σ)

∆(Σ) + diam Σ
and i(Σ) = inf{I(B) : B ⊂ Σ, 2 ≤ |B|}.

The self-similar sets K(Σ; q) where q ∈ (0, 1) have the following properties:
(1) K(Σ; q) is an interval if and only if q ≥ I(Σ);
(2) K(Σ; q) is not a finite union of intervals if q < I(Σ) and ∆(Σ) ∈ {σ2 − σ1, σs − σs−1};
(3) K(Σ; q) contains an interval if q ≥ i(Σ);
(4) If d = δ(Σ)

diam(Σ)
< 1

3+2
√

2
and 1

|Σ| <
√
d

1+
√
d
, then for almost all q ∈

(
1
|Σ| ,

√
d

1+
√
d

)
the set

K(Σ; q) has positive Lebesgue measure and the set K(Σ;
√
q) contains an interval;

(5) K(Σ; q) is a Cantor set of zero Lebesgue measure if q < 1
|Σ| or, more generally, if qn <

1
|Σn| for some n ∈ N where Σn =

{∑n−1
k=0 akq

k : (ak)
n−1
k=0 ∈ Σn

}
.

(6) If Σ ⊃ {a, a + 1, b + 1, c + 1, b + |Σ|, c + |Σ|} for some real numbers a, b, c ∈ R with
b 6= c, then there is a strictly decreasing sequence (qn)n∈ω with limn→∞ qn = 1

|Σ| such
that the sets K(Σ; qn) has Lebesgue mesure zero.

Marek Bienias Algebraic structures in some sets of functions

We give an introduction into the notion of lineability, algebrability and strong algebrability. We
present two general methods: Independent Bernstein sets method and Exponential like function
method that have a huge number of applications in proving algebrability results. It is a part of my
PhD Thesis and is a joint work with Artur Bartoszewicz, Szymon Głąb and Małgorzata Filipczak.

Ján Borsík Strongly quasicontinuous functions

A function f : R → R is quasicontinuous at a point x if for every positive ε and for every nei-
ghborhood U of x there is an open nonempty set G ⊂ U such that |f(y) − f(x)| < ε for each
point y ∈ G. A function f is quasicontinuous if it is such at each point. Quasicontinuous functi-
ons need not be measurable. Moreover, the set of points of discontinuity of a quasicontinuous
function is of first category however it need not be of measure zero. In the talk, we will investi-
gate classes of functions between continuous and quasicontinuous functions for which the set of
discontinuity points is of measure zero or even σ-porous.

Daria Bugajewska On lower bounded Λ-variation and its applications

In 1972 Waterman introduced a certain generalization of the bounded variation in the sense of
Jordan, namely the so-called Λ-variation. In this talk we are going to discuss the concept of the
Λ-variation in the L1-setting (the so-called lower Λ variation), which allows to deal with the Λ-
variation of functions that are equal almost everywhere. We will also present some applications
of this type of variation to operator theory and to nonlinear differential and integral equations.
In particular, we will show sufficient conditions which guarantee that a convolution operator



8

or a nonautonomous superposition operator maps the space of functions of lower Λ-bounded
variation into itself.

Emma D’Aniello and Timothy H. Steele Attractors for iterated function schemes I and II

Let X be a compact metric space with S = {S1, . . . , SN} a finite set of contraction maps
from X to itself. Call a subset F of X an attractor for the iterated function scheme (IFS) S
if F =

⋃N
i=1 Si(F ). Working primarily on the unit interval I = [0, 1], we discuss the structure of

individual attractors as well as the topological structure of the collection of attractors for IFS.

Pratulananda Das On IK-Cauchy functions

Joint work Martin Sleziak and Vladimir Toma.

In this paper we introduce the notion of IK-Cauchy function, where I and K are ideals on the
same set. The IK-Cauchy functions are a generalization of I∗-Cauchy sequences and I∗-Cauchy
nets. We show how this notion can be used to characterize complete uniform spaces and we study
how IK-Cauchy functions and I-Cauchy functions are related.

REFERENCES

[1] P. Das, S. K. Ghosal, On I-Cauchy nets and completeness, Topology Appl., 157 (7) (2010), 1152–1156.
[2] P. Das, S. K. Ghosal, When I-Cauchy nets in complete uniform spaces are I-convergent, Topology Appl., 158

(2011), no. 13, 1529–1533.
[3] P. Das, Some further results on ideal convergence in topological spaces, Topology Appl., 159 (2012), 2621–

2625.
[4] P. Kostyrko, T. Šalát, and W. Wilczynski, I-convergence, Real Anal. Exchange, 26 (2000-2001), 669–686.
[5] B. K. Lahiri and P. Das, I-convergence and I∗ -convergence of nets, Real Anal. Exchange, 33(2) (2007-08),

431–442.
[6] M. Mačaj and M. Sleziak, IK-convergence, Real Anal. Exchange, 36 (2010/2011), no. 1, 177–194.

Jana Doleželová Distributional chaos – recent results

One of the most important extensions of the concept of Li-Yorke chaos is distributional chaos
introduced in [1]. This extended definition is much stronger – there are many mappings which
are chaotic in sense of Li-Yorke but not distributionally chaotic.
The talk will be devoted to recent results concerning distributional chaos. We show the existence
of an invariant distributionally chaotic set [2]. The relation between chaotic pairs and triples will
be investigated [3].
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REFERENCES

[1] Schweizer B., Smítal J., Measures of chaos and a spectral decomposition of dynamical systems on the interval,
Trans. Amer. Math. Soc. 344, (1994), 737–754.

[2] Doleželová J., Distributionally scrambled invariant sets in a compact metric space, Nonlinear Analysis 79,
(2013), 80–84.

[3] Doleželová J., Scrambled and distibutionally scrambled n-tuples, to appear in J. of Difference Eq. Appl. (2014)

Jonald P. Fenecios On a new characterization of Baire-1 functions
Joint work with Emmanuel A. Cabraly and Abraham P. Raccaz.

A function f : R→ R is said to be Baire-1 if for every open set U the inverse image of U under
f is an Fσ set. Equivalently, Henri Lebesgue showed that f : R→ R is Baire-1 if and only if for
each ε > 0 there is a sequence of closed sets {En} such that R =

⋃∞
n=1 En and ωf (En) < ε for

each n where
ωf (En) = sup |f(x)− f(y)| : x, y ∈ En}.

Recently, P. Y. Lee, W. K. Tang and D. Zhao jointly discovered a new characterization of Baire-1
functions involving the usual ε-δ formulation. That is, f : R → R is Baire-1 if and only if for
each ε > 0 there is a positive function δ : R→ R+ such that for any x, y ∈ R

|x− y| < min{δ(x), δ(y)} ⇒ |f(x)− f(y)| < ε.

In this study, we slightly improve Lebesgue’s theorem using the ε− δ characterization of Baire-1
functions by establishing the following statement: Let Df be the set of discontinuity of f : R→
R. Then f is Baire-1 if and only if for each ε > 0 there is a sequence of closed sets {Dn} such
that Df =

⋃∞
n=1Dn and ωf (Dn) < ε for each natural number n. Some simple applications of

the new characterization are discussed.

Małgorzata Filipczak On algebraic properties of supports of probability Bernoulli-like measu-
res
Joint work with Artur Bartoszewicz and Tomasz Filipczak.

Let p ∈ (0, 1/2) and µp be the distribution of the sum

X =
∞∑
k=1

(
1

2k

)
Xk

where Xk, k ∈ N, is a sequence of independent random variables with Pr (Xk = 0) = p and
Pr (Xk = 1) = 1− p.

For any p ∈
(
0, 1

2

]
, µp is a complete, continuous probability measure, positive on open inter-

vals, and the set

Ap =
{
x = 0, x1x2x3 . . .(2) : lim

n→∞

x1 + ...+ xn
n

= p
}

has a full µp measure.
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In particular, µ 1
2

is equal to the Lebesgue measure λ andA 1
2

consists of simply normal numbers
in base 2.

We show that:
(1) if p = 1

2
then Ap + Ap = [0, 1),

(2) if p ∈
(
0, 1

2

)
then Int(Ap + Ap) = ∅,

(3) if p ∈
[

1
4
, 1

2

]
then Ap − Ap = [0, 1),

(4) if p ∈
(
0, 1

4

)
then Int(Ap − Ap) = ∅.

Tomasz Filipczak Algebraic differences of binary sequences
Joint work with Małgorzata Filipczak.

Let Xm be the set of all binary sequences with m elements. Sequences from Xm we treat as
(binary) numbers from the group Z (2m) = {0, . . . , 2m − 1}. We prove that, if 1

4
m < n < 3

4
m

then, for any sequence x ∈ Xm except for (1, 0, ..., 0) = 2m−1, there exist sequences a, b ∈ Xm

containing exactly n ones each, and such that x = b− a.
This result implies that for any p ∈

[
1
4
, 3

4

]
and any x ∈ [0, 1) there are a, b such that x = b− a

and the density of ones in binary expansions of a and b are equal to p.

Rafał Filipów Ideal convergence of sequences of functions

We prove a characterization showing when the ideal pointwise convergence does not imply the
ideal equal (aka quasi-normal) convergence. The characterization is expressed in terms of a car-
dinal coefficient related to the bounding number b. We also prove a characterization showing
when the ideal equal limit is unique. This is joint work with Marcin Staniszewski.

Šimon Franěk Relationship between regulated function of two real variables and sequence of
regulated functions of one real variable

There is an interesting relationship between regulated functions f : [a, b] × [0, 1] → Y (where
Y is a Banach space) and pointwise convergent sequences fn : [a, b] → Y defined by fn(t) =
f(t, 1/n).

Dana Fraňková Regulated functions of multiple variables

We will define regulated functions f : X → Y (where X, Y are Banach spaces) and we will
present their basic properties, including compactness theorem.

Szymon Głąb Large free subgroups of automorphisms groups of ultrahomogeneous spaces
Joint work with Filip Strobin.

In this note we consider the following largeness notion of subgroups of S∞. A group G is large if
it contains a free subgroup of c generators. We give a necessary condition for countable structure
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A to have large group Aut(A) of authomorphisms of A. It turns out that any countable free
subgroup of S∞ can be extended to large free subgroup of S∞, and under Martin’s Axiom any
free subgroup of S∞ with cardinality less than c can be also extended to large free subgroup of
S∞. Finally, if Gn are finitely generated groups, then we obtain that either

∏
n∈NGn is large or

it does not contain free subgroup of uncountably many generators.

Jacek Hejduk On topologies generated by sequences of intervals tending to zero
Joint work with Renata Wiertelak.

Let R be the set of real numbers, L the family of Lebesgue measurable subsets of R. By λ(A)
we shall denote the Lebesgue measure of a measurable set A and by |I| the length of an interval
I .

Let J = {Jn}n∈N be a sequence of closed intervals tending to zero. It means that diam{{0} ∪
Jn} −→

n→∞
0.

We shall say that a point x0 ∈ R is a J–density point of a set A ∈ L, if

lim
n→∞

λ(A ∩ (Jn + x0))

|Jn|
= 1.

Let
ΦJ(A) = {x ∈ R : x is a J − density point of A}

and

α(J) = lim sup
n→∞

diam{{0} ∪ Jn}
|Jn|

.

If α(J) <∞, then ΦJ is a lower density operator and the family

TJ = {A ∈ L : A ⊂ ΦJ(A)}
is a topology on R containing density topology Td.

If α(J) =∞, then ΦJ is an almost lower density operator and the family

TJ = {A ∈ L : A ⊂ ΦJ(A)}
is a topology containing natural topology.

The major idea of presentation is giving properties of topology TJ for an arbitrary sequence
J = {Jn}n∈N of closed intervals tending to zero including the aspect of separation axioms. Some
open problems are also included.

REFERENCES

[1] M. Csörnyei, Density theorems revisited, Acta Sci. Math. 64 (1998), 59–65.
[2] M. Filipczak, J. Hejduk, On topologies associated with the Lebesgue measure, Tatra Mt. Math. Publ. 28 (2004),

187–197.
[3] J. Lukeš, J. Malý, L. Zajiček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in

Math., Vol. 1189, Springer–Verlag, Berlin, 1986.
[4] J. C. Oxtoby, Measure and category, Springer–Verlag, Berlin, 1987.
[5] J. Hejduk, R. Wiertelak, On the generalization of density topologies on the real line, to appear in Math. Slovaca

at 2014.
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[6] J. Hejduk, R. Wiertelak, On the abstract density topologies generated by lower and almost lower density opera-
tors, Traditional and present-day topics in real analysis, Łodź University Press, 2013.

[7] W. Wilczyński, Density topologies. In: Handbook of Measure Theory, E. Pap. Elsevier 2002, chapter 15,
pp. 675–702.

Grażyna Horbaczewska On microscopic sets with respect to sequences of functions

DEFINITION 1 ([A1]). A set E ⊂ R is microscopic if for each ε > 0 there exists a sequence of
intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and λ(In) ≤ εn for n ∈ N.

A family of all microscopic sets is a σ-ideal. It is compared with other σ-ideals.
We consider what it causes if we replace a geometric sequence εn with another one, i.e. we

study families of sets defined as follows.
Let (fn)n∈N be a sequence of increasing functions fn : (0, 1)→ (0, 1) such that limx→0+ fn(x) =

0 and there exists x0 ∈ (0, 1) such that for every x ∈ (0, x0) the series
∑

n∈N fn(x) is convergent
and the sequence (fn(x))n∈N is nonincreasing.

DEFINITION 2 ([H]). A set E ⊂ R belongs to M(fn) if for each x ∈ (0, 1) there exists a
sequence of intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and λ(In) ≤ fn(x) for n ∈ N.

REFERENCES

[A1] J. Appell, Insiemi ed operatori “piccoli” in analisi funzionale, Rend. Ist. Mat. Univ. Trieste, 33 (2001),
127–199.

[A2] J. Appell, A short story on microscopic sets, Atti. Sem. Mat. Fis. Univ. Modena, 52 (2004), 229–233.
[AAV] J. Appell, E. D’Aniello, M. Vath, Some remarks on small sets, Ricerche di Matematica, 50, (2001),

255–274.
[BJ] T. Bartoszyński, H. Judah, Set theory: On the structure of the real line, A. K. Peters, Ltd., Wellesley, MA,

(1995).
[H] G. Horbaczewska, Microscopic sets with respect to sequences of functions, accepted to be published in

Tatra Mt. Math. Publ.
[HKWB] G. Horbaczewska, A. Karasińska, E. Wagner-Bojakowska, Properties of the σ-ideal of microscopic sets,

Traditional and present-day topics in real analysis, Łódź University Press, 2013.
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Piotr Kalemba On an ideal related to the ideal (v0).

The ideal (v0) is known in literature and is naturally associated to the structure [ω]ω. We consider
some counterpart of the ideal (v0) related to the structure Dense(Q) and investigate its combi-
natorial properties. By the use of the notion of ideal type we prove, that under CH this ideal is
isomorphic to (v0).

Jun Kawabe Bounded convergence theorem for nonlinear integral functionals

In this talk, we introduce a new notion of the perturbation of nonlinear integral functionals to
formulate a functional form of the convergence theorems for nonlinear integrals in nonadditive
measure theory. As its direct consequences, we obtain the bounded convergence theorems for
typical nonlinear integrals, which show that the autocontinuity of a nonadditive measure is equi-
valent to the validity of the bounded convergence theorems for the Choquet, the Sugeno, and the
Shilkret integrals as well as their symmetric and asymmetric extensions.

Tamás Keleti Decomposing the real line into Borel sets closed under addition

Joint work with Márton Elekes.

We consider decompositions of the real line into pairwise disjoint Borel pieces so that each
piece is closed under addition. How many pieces can there be? We prove among others that the
number of pieces is either at most 3 or uncountable, and we show that it is undecidable in ZFC
and even in the theory ZFC + c = ω2 if the number of pieces can be uncountable but less
than the continuum. We also investigate various versions: what happens if we drop the Borelness
requirement, if we replace addition by multiplication, if the pieces are subgroups, if we partition
(0,∞), and so on.

Zdeněk Kočan On some properties of dynamical systems on one-dimensional spaces

The talk is based on a joint work with Veronika Kurková and Michal Málek. We consider some
properties of discrete dynamical systems such as the existence of an horseshoe, the positivity of
topological entropy, the existence of a homoclinic trajectory or Lyapunov instability on the set
of periodic points. We survey the known relations between the properties in the case of interval,
graph and dendrite maps. For example, in all the mentioned cases the existence of an arc hor-
seshoe implies every of considered properties. But we construct a continuous map on a Peano
continuum with an arc horseshoe and zero topological entropy.
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Stanisław Kowalczyk On continuity in generalized topology

DEFINITION 1. A family Γ of subsets of X is called a generalized topology if ∅ ∈ Γ and the
union of arbitrary subfamily B ⊂ Γ belongs to Γ.

There are many kinds of types of continuity considered in real analysis connected with the
notion of Lebesgue measure which can be described as a continuity in some generalized topology
(for example: UC1 -continuity, preponderant continuity in O’Malley sense, Darboux property).
The following technical lemma is needed to obtain this equivalence.

LEMMA 1. Let a family {Es : s ∈ S} of measurable subsets of R be such that

∀s∈S∀x∈Esd(Es, x) > 0.

Then the set E =
⋃
s∈S Es is measurable.

We present some properties of real functions which are continuous in a generalized topology.

THEOREM 1. Let Γ be a generalized topology in X . Then {A ∈ Γ: ∀B∈ΓA ∩ B ∈ Γ} is a
topology in X .

DEFINITION 2. Let Γ be a generalized topology in X . By TΓ we denote the topology {A ∈
Γ: ∀B∈ΓA ∩B ∈ Γ} in X and we call it the topology determined by Γ.

THEOREM 2. Let Γ be a generalized topology in X , x0 ∈ X , CΓ(x0) be the family of all
functions g : X → R which are Γ-continuous at x0 and let f : X → R. Then f + g ∈ CΓ(x0) for
each g ∈ CΓ(x0) if and only if f is continuous in TΓ.

THEOREM 3. Let Γ be a generalized topology in X , x0 ∈ X , CΓ(x0) be the family of all
functions g : X → R which are Γ-continuous at x0 and let f : X → R. Then min{f, g} ∈ CΓ(x0)
for each g ∈ CΓ(x0) if and only if f is continuous in TΓ.

THEOREM 4. Let Γ be a generalized topology in X , x0 ∈ X , CΓ(x0) be the family of all
functions g : X → R which are Γ-continuous at x0 and let f : X → R. Then max{f, g} ∈
CΓ(x0) for each g ∈ CΓ(x0) if and only if f is continuous in TΓ.

Let C(Γ) be the set of all functions f : x→ R continuous in a generalized topology Γ.

COROLLARY 1. Let Γ be a generalized topology in X . Then
(1) AC(Γ) ⊂ C(TΓ),
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(2) MaxCΓ
⊂ C(TΓ),

(3) MinCΓ
⊂ C(TΓ).

Under some natural, but rather complicated, conditions on Γ we have equalities in the assertion
of the previous corollary.
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Ivan Kupka Topology can say more

Some notions in function theory are topological, some notions are algebraic or “metric”. We need
a metric to be able to work with notions like contractivity, measure of noncompactness, uniform
continuity, uniform convergence, lipschitzness. We need more than a topological structure to
define periodicity. Do we?

In our talk we will show, that practically all notions mentioned above can be modelled in a
topological way. Several author’s results on the topic "topologisation of some nontopological
notions"will be presented. Most of them have been published, some of them are new.

Two notions of topological similarity of functions (multifunctions) can sometimes replace the
property “f and g have similar relative derivatives”. We will see, that if two multifunctions are
topologically similar then they have similar properties:

THEOREM. Let X, Y, Z be Hausdorff topological spaces, be F : X → Y, G : X → Z multi-
functions. Let F has a continuous selection f : X → Y . If G is F -continuous (“F -similar”) on
X then it has a continuous selection g : X → Z.

Grażyna Kwiecińska On the Carathéodory superposition of multifunctions and an existence
theorem

Let I ⊂ R be an interval and Y a reflexive Banach space. Let F : I × Y  Y be a multifunction
and f : I → Y a function. We say that F has the (H) property if F (·, y) is a derivative for
each y ∈ Y , the family {F (x, ·)}x∈I is equicontinuous and the family {Ff}f∈C(I,Y ) is uniformly
integrably bounded, where Ff (x) = F (x, f(x)) for x ∈ I , and C(I, Y ) denotes the family of all
continuous vector functions f : I → Y .

We prove that the Carathéodory superposition Ff is a derivative whenever F has the (H) pro-
perty and f ∈ C(I, Y ). Some application of this theorem to the existence of solutions of diffe-
rential inclusions f ′(x) ∈ F (x, f(x)) will be discussed.
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Elijah Liflyand Amalgam type spaces and integrability of the Fourier transforms

We introduce an amalgam type space, a subspace of L1(R+). Integrability results for the Fourier
transform of a function with the derivative from such an amalgam space are proved. As an appli-
cation, we obtain conditions for the integrability of trigonometric series. Sharpness of Hardy’s
inequality can be shown within this scope as well.

Lucie Loukotová Relative absolute continuity

The aim of this talk is to introduce a generalization of the classical absolute continuity to a
relative case, with respect to a subset M of an interval I . This generalization is based on adding
more requirements to disjoint systems (ak, bk) from the classical definition of absolute continuity
– these systems should be not too far from M and should be small relative to some covers of M .
We discuss basic properties of relative absolutely continuous functions and compare this class
with other classes of generalized absolutely continuous functions (AC, ACG, AC*, ACG*).

Ewelina Mainka-Niemczyk On series expansion of sine and cosine families

Let K be a convex cone in a normed linear space X , and let Et : K → n(K), Ft : K → n(X)
for t ≥ 0. A family {Et : t ≥ 0} is called a sine family associated with family {Ft : t ≥ 0} if

Et+s(x) = Et−s(x) + 2Ft(Et(x)), 0 ≤ s ≤ t, x ∈ K,
while family {Ft : t ≥ 0} is called a cosine family if

F0(x) = {x}, Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)), 0 ≤ s ≤ t, x ∈ K
(here, of course, under assumption that values of Ft are in K).

In the talk the necessary and sufficient condition for a family given by some series to be a
regular cosine family is presented. Moreover assumptions, under which a regular cosine and sine
families can be expressed by series are given.

Milan Matejdes Graph and pointwise upper Kuratowski limit of multifunctions

The contribution deals with a connection between an upper Kuratowski limit of a sequence of
graphs of multifunctions and an upper Kuratowski limit of a sequence of their values. Namely,
we will study under which conditions for a graph (topological) cluster point [x, y] ∈ X × Y of
a sequence {Gr Fn : n ∈ ω} of graphs of lower quasi continuous multifunctions, y is a vertical
(pointwise) cluster point of the sequence {Fn(x) : n ∈ ω} of values of given multifunctions.

András Máthé Purely unrectifiable sets are uniformly purely unrectifiable

Let E be a Borel set in the plane such that for every 1-Lipschitz function f : R→ R,

L({x ∈ R : (x, f(x)) ∈ E}) = 0

where L denotes Lebesgue measure.
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Then for every ε > 0 there exists an open set G ⊃ E such that for every (1 − ε)-Lipschitz
function f : R→ R,

L({x ∈ R : (x, f(x)) ∈ G}) < ε.

This result implies the statement of the title. I will explain the proof which is based on a game
and Martin’s Borel determinacy theorem.

Giselle Antunes Monteiro Functions of bounded semivariation: a survey

Different notions of variation appear when we are dealing with problems in infinite dimension.
The semivariation, for instance, is commonly used in the study of convolution, integral equations
and measure differential equations. However, we can observe in the literature a lack of material
collecting basic results on such a concept. In this work we summarize the present knowledge as
well as some remarks and new results on semivariation – such as, its connection with the notion
of abstract Kurzweil-Stieltjes integral.

REFERENCES

[1] Monteiro, G. A., On functions of bounded semivariation, in preparation.

Laurent Moonens Lebesgue averages on rectangles

We shall discuss, in this talk, conditions under which the maximal operator M associated to a
sequence of rectangles (Qi) in the Euclidean plane, defined by the formula:

Mf := sup
i

1Qi

|Qi|
∗ |f |,

satisfies a weak-(1, 1) inequality. As we shall see, a bad behaviour of the maximal operator as-
sociated to a sequence of “standard” rectangles of the form Qi := [0, ai] × [0, bi] (ai, bi > 0)
leads to a bad behaviour of the maximal operator associated to shifted averages on the rectan-
gles Q′i := ui + Qi, where the ui’s are arbitrary vectors – this comes from a joint work with
J. M. Rosenblatt. If time permits, we shall also discuss some issues when we replace each Qi by
a rectangle Q′i obtained from Qi by some rotation of angle θi, when (θi) is a lacunary sequence
of angles.

María Guadalupe Morales Macías Some peculiarities about Henstock-Kurzweil integrable
functions space and the Fourier Transform.

In this work we study the Fourier Transform using Henstock-Kurzweil intregral. We get if f ∈
HK(R) ∩BV (R) (it means, f is integrable-HK and is a bounded variation function) its Fourier
Transform (in classical sense) and the integral (HK sense)∫

R
f(x)e−isxdx
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(which it will called Henstock-Fourier Transform) are equal almost everywhere. Moreover we
characterize the set HK(R) ∩ BV (R) respect to space L2(R). Finally we extend Henstock-
Fourier Transform over a subspace in Lp(R), with 1 < p < 2.

Kazimierz Musiał Convergence in measure of non-measurable functions
Joint work with M. Balcerzak.

Let (Ω,Σ, µ) be a complete probability space and let X be a Banach space. We introduce the
notion of scalar equi-convergence in measure which being applied to sequences of Pettis or
Birkhoff integrable functions generates a new convergence theorem.

Tomasz Natkaniec Ideal convergence of sequences of quasi-continuous functions
Joint work with Piotr Szuca.

For any Borel ideal I we describe the I-Baire system generated by the family of quasi-continuous
real-valued functions defined on a Baire space. We characterize ideals I for which ideal and or-
dinary Baire systems for quasi-continuous functions coincide. Analogous results for the class of
continuous functions have been obtained by Laczkovich and Recław in [2] and (independently)
Debs and Saint Raymond in [1].
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Adam Nawrocki On some classes of generalized almost periodic functions
Joint work with Dariusz Bugajewski.

One of the most important generalizations of almost periodic functions in the sense of Bohr are
almost periodic functions in view of the Lebesgue measure, introduced by Stepanov in 1926. In
this talk we are going to discuss asymptotic properties of the classical, continuous and unbounded
function, defined by the formula

f(x) =
1

2 + cos x+ cos
(
x
√

2
) , for x ∈ R.

which is almost periodic in view of the Lebesgue measure as well as in the sense of Levitan. Our
discussion will be based on diophantine approximation. In particular, we will present the new
method of calculating of some limits.

Artur Nicolau Oscillation of Hölder continuous functions

Local oscillation of a function satisfying a Hölder condition is considered, and it is proved that
its growth is governed by a version of the Law of the Iterated Logarithm.
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Branislav Novotný Cardinal invariants of the Vietoris topology, fine topology and the topology
of uniform convergence on C(X)
Joint work with L’ubica Holá.

Let X be a topological space, C(X) be the space of all real valued continuous functions on
X . The topology of uniform convergence τU on C(X) is a classical one. Despite this fact, its
important cardinal invariant, density, seems not to be understood sufficiently. We present its
importance from a somewhat broader point of view.

Let τΓ be the Vietoris topology on X × R restricted to C(X), where functions are identified
with their graphs. The basis of the topology τΓ consists of the sets of the form

B(f, ε) = {g ∈ C(X); |f(x)− g(x)| < ε(x) for x ∈ X},
where f ∈ C(X) and ε is lower semi continuous real valued function on X . This fact relates the
topology τΓ to well known fine topology (or m-topology) τω, where ε runs through continuous
functions, and also to τU . We investigate cardinal invariants of τΓ, τω and τU depending on the
properties of X . Since τU is metrizable, many cardinal invariants in our interest are equal to its
density d(τU). More interestingly also many cardinal invariants on τω like cellularity, density,
Lindelöf number and weight, are equal to d(τU), which is why we study this characteristic.
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Victor Olevskii Localization and completeness in L2(R)

We give a description of a localization sequence for a determining average sampler.

Giorgi G. Oniani On the convergence of double Fourier–Haar series by dilations of a set

There is studied the convergence of partial sums of a double Fourier-Haar series taken by dilati-
ons of a given bounded set W on the plane for which the origin is an inner point. From obtained
results it follows that for a set W from the quite general family (that for example contains the
family of convex sets) there is possible two alternative cases: either Fourier-Haar series of any
function f ∈ L([0, 1]2) is almost everywhereW -convergent orL ln+ L([0, 1]2) is the best integral
class in which the almost everywhere W -convergence of double Fourier-Haar series is provided.
Moreover, there is found the characteristic property for W determining which one among the
two cases is realized.
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Mikhail G. Plotnikov Q-measures and uniqueness sets for Haar series
Julia Plotnikova Haar series, martingales, and uniqueness theorems

In 1910 A. Haar introduced the system {Hn}∞n=0 of functions on [0, 1) [1, 3]. The Haar system
may be considered also on the dyadic group G.

Let (S) =
∑∞

n=0 anHn(x) be any series with respect to the Haar system on the group G, with
complex coefficients an; SN (N = 1, 2, . . .) be the N th partial sum of the series (S). It is well-
known [2, 4] that the partial sums S2k form a discrete-time martingale on the filtered probability
space (Ω, F , {Fk}∞k=0, P), where Ω := G, F is the σ-algebra of Borel sets on G, P is the
normed Haar measure on G. Every σ-algebra Fk contains the empty set and all unions of dyadic
intervals of rank k.

An interesting question is, what properties of the Haar system can be extended to martingales
on other filtered probability spaces. We study uniqueness problems for pointwise convergence of
martingales.

Choose and fix an arbitrary filtered probability space (Ω, F , {Fk}∞k=0, P).

DEFINITION 1. We say that a set A ⊂ Ω is a set of uniqueness for martingales (or else a set of
type UM ), if trivial martingale is only martingale (Xk) which can satisfy limk→∞Xk(ω) = 0 for
all ω ∈ Ω \ A.

Consider the topology τ on Ω, generated by all sets B ∈ F∞
def
=
⋃∞
k=0Fk.

THEOREM 1. Suppose that the probability space (Ω, F , P) carrying the topology τ is compact.
Then every set U ∈ F∞ with P(U) = 0 is a set of type UM . As corollary, ∅ is a set of type UM
under the made assumptions.

The theorem 1 can be generalized as follows.

THEOREM 2. Suppose that a probability space (Ω, F , P) carrying the topology τ is compact.
Assume that a set U ∈ F∞ with P(U) = 0, and a random variable ξ with E |ξ| < ∞, and a
martingale Xk such that limk→∞Xk(ω) = ξ(ω) for all ω ∈ Ω \ U , are considered. Then

Xk = E (ξ | Fk) (P-a.e.) for each k = 0, 1, . . .,

E (∗ | ∗) is a conditional expectation.

Theorems 1 & 2 may be considered as a martingale version of the well-known theorems of
Cantor–Young–Bernstein and de la Vallée Poussin [5].
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Dušan Pokorný Traces of separately convex functions

In the talk we will discuss the following question: For a function f of two or more variables
which is convex in the directions of the coordinate axes, how can its trace g(x) = f(x, x, . . . , x)
look like? In the two-dimensional case, we provide some necessary and sufficient conditions,
as well as some examples illustrating that our approach does not seem to be appropriate for
finding a characterization in full generality. For a concave function, however, a characterization
is established. The results are a joint work with O. Kurka.

Patrick Reardon Embeddings of the Ellentuck, dual Ellentuck and Hechler spaces
Joint work with Andrzej Nowik.

The Ellentuck, dual Ellentuck, Hechler and eventually different topologies are associated with,
respectively, Mathias forcing, dual Mathias forcing, dominating real forcing and eventually dif-
ferent real forcing. It is known that these spaces satisfy the Baire property.

We have shown that each of the Ellentuck, dual Ellenctuck and Hechler spaces contains a clo-
sed homeomorphic copy of the other two. This is not true of the eventually different topology.
We have also shown that the Ellentuck topology satisfies the following dichotomy: every perfect
set contains a countable perfect set or a closed copy of the classical Sorgenfey line (0, 1]. This di-
chotomy leads to a Marczewski-Burstin representation of the Ellentuck Marczewski-measurable
sets in terms of copies of the classical Sorgenfrey line. Our results imply that the dichotomy also
holds in the dual Ellentuck and Hechler topologies.

Alain Riviere Hausdorff dimension and derivatives of nondecreasing functions

We endow the space Cr of nondecreasing functions on the unit interval I with the uniform metric
and consider its subspace Ccr of continuous nondecreasing functions. We consider typical such
functions f , in the sense of Baire categories and focus on the Hausdorff dimension of the set of
points where the Diny derivative (eventually upper, lower, left, right) of f is respectively infinite,
null or positive and finite.

For example, the set of all t ∈ I at which f has positive and finite Diny upper derivative, is
of Hausdorff dimension 1. Our study, and more specifically the result above, is connected with a
more geometric question concerning typical convex bodies.

Martin Rmoutil Proximinal subspaces and norm-attaining functionals

For a non-reflexive Banach space X and its closed subspace Y ⊂ X of finite codimension in X ,
consider the following two sentences:

(1) Y is proximinal in X;
(2) Y ⊥ ⊂ NA(X) := {x∗ ∈ X∗; ∃x ∈ BX : x∗(x) = ‖x∗‖}.
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It is easy to prove (1) =⇒ (2) for any X . We show that for some Banach spaces X the oppo-
site implication holds (e.g. when X is WLUR), and for some it does not (we construct counte-
rexamples). We also provide a negative solution to the long-standing problem of G. Godefroy of
2-lineability of NA(X).

Lenka Rucká Waiting times in a queue with m servers

Assume a queue with m servers and a single waiting line. The next person in line goes to the first
available server. In this talk some estimates will be given for the waiting time (time waiting in
line) in terms of the customer arrival rate α and the average serving time 1

σ
. The main result is

that if m0 is the minimum number of servers required for equilibrium, then for m0 + k servers,
the expected waiting time is less than 1

kσ
.

Daniel Seco Complete systems of inner functions in L∞

Recently, Hedenmalm and Montes-Rodríguez showed that the integer powers of eπαix and eπβi/x

span a weak−∗ dense subspace of L∞ on the real line (that is, the system is complete) if and
only if αβ ≤ 1. We study the problem of adding a third function, in the case when αβ > 1, to
make the system complete. The functions that we add are of the form eπiγ/(x−t) for some t > 0.

Valentin Skvortsov On M -sets and U -sets for system of characters of zero-dimensional com-
pact groups

It is shown that some results on construction of M -sets and U -sets, obtained earlier for Walsh
system, can be extended to the general case of the system of characters of zero-dimensional
compact Abelian groups. In particular a construction of a perfect M -set whose p-dimensional
Hausdorff measure equals zero, with any p > 0, is given for this system. One of the important
auxiliary result in this construction is the localization theorem of Schneider type. Construction
of “thick” U -sets for the above system of characters are also discussed.

Jiří Spurný Borel sets and functions in topological spaces

We present a construction of the Borel hierarchy in general topological spaces and its relation
to Baire hierarchy. We define Borel classes of mappings, prove the validity of the Lebesgue-
Hausdorff-Banach characterization for them and show their relation to Baire classes of mappings
on compact spaces. The obtained results are used for studying Baire and Borel order of compact
spaces, answering thus one part of a question asked by R. D. Mauldin. We present several exam-
ples showing some natural limits of our results in non-compact spaces.
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Filip Strobin Spaceability of the set of continuous injections from B`p into `p with nowhere
continuous inverses
Joint work Marek Balcerzak.

Let p ∈ (1,∞). I will show that, in the Banach space of all bounded continuous mappings
from B`p (the open unit ball in `p) into `p, the subset consisting of all injections with nowhere
continuous inverses contains an isometric copy of `p (in particular, it is spaceable). The proof
uses some ideas on Creswells example which gives us a continuous bijection T from `2 onto a
subset of `2 such that the inverse T−1 is discontinuous everywhere.
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Jaroslav Šupina Ideal version of QN-space can be trivial

Studying quasi-normal convergence of sequences of real-valued functions, L. Bukovský, I. Rec-
ław and M. Repický [1] introduced the notion of a QN-space and showed that from many points
of view a QN-space is small. Lately, P. Das and D. Chandra [3] initiated the investigation of
ideal version of QN-space, called JQN-space, based on convergence of reals with respect to
ideal J on ω due to H. Cartan [2] and appropriate modification of quasi-normal convergence.
In contrary to QN-space, we have shown that any topological space can be a JQN-space for
suitable ideal J . Actually, we have shown that for any ideal J on ω, all pointwise convergent
sequences of real-valued functions converge quasi-normally with respect to J if and only if J
contains an isomorphic copy of the ideal Fin× Fin on ω × ω defined by

Fin× Fin = {A ⊆ ω × ω; |{n; |{m; (n,m) ∈ A}| = ℵ0}| < ℵ0}.

In our presentation we focus on this result and its two ideal version. We describe the above
class of ideals and we give an example of a tall P-ideal J and a set of reals which is a JQN-
space but which is not a QN-space. Moreover, we discuss the relation between ideal versions
of QN-space and an S1(Γ,Γ)-space and we discuss the preservation of these properties under
well-known ideal orders.
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Francesco Tulone Multiple Kurzweil-Henstock and Perron dyadic integrals

Joint work with Valentin Skvortsov.

We consider multiple Walsh and Haar series which are rectangular convergent outside excepti-
onal sets from some class of U -sets, without assuming a priori integrability of the sum in any
prescribed sense, and we solve the coefficients problem by finding an appropriate integral to be
used in generalized Fourier formulas. The method is based on reducing the coefficients problem
to the one of recovering a function from its derivative with respect to the appropriately chosen
dyadic derivation basis. The difficulties which should be overcome in applying this method are
related to the fact that the primitive we want to recover is differentiable not everywhere but out-
side some of the above mentioned U -sets which are not countable in a dimension greater then
one. We investigate continuity assumptions which should be imposed on the primitive at the
points of exceptional sets to guarantee its uniqueness. It turns out that usual continuity with re-
spect to the dyadic basis is not enough for this purpose and we introduce a stronger notion of
continuity, which we call local Saks continuity with respect to the basis.

The most natural integration process to recover primitives is Kurzweil-Henstock integral. We
consider continuity properties of the dyadic Kurzweil-Henstock integral in a dimension greater
then one and show that it has local Saks continuity. But it solves the problem of recovering a
primitive only in the case of countable sets or some other rather “thin” exceptional sets and fails
to solve it in the case of the sets we are interested in. So we have to introduce a suitable Perron-
type integral defined by major and minor functions having local Saks continuity property. We
show that multiple Walsh series which converges everywhere outside a U -set of the type we
consider here, is the Fourier series of its sum in the sense of this Perron-type integral. The same
result, with some additional assumption on the behavior of the coefficients, is obtained for Haar
series.

Małgorzata Turowska About contingent, differentiability and Lipschitz mappings

DEFINITION 1 ([3]). Let ∅ 6= M ⊂ Z, where Z is a real normed space, and z ∈M . The set{
v ∈ Z : ∃(zn)n∈N, zn ∈M, lim

n→∞
zn = z, ∃(λn)n∈N, λn > 0: lim

n→∞
λn(zn − z) = v

}
is called a tangent cone to M at z and is denoted Tan(M, z). Elements of Tan(M, z) are called
vectors tangent to M at z. The set Tan(M, z) is also called a contingent of M at z ([1], [2]).

Let X , Y be real normed spaces. We give a criterion for the differentiability (in the Fréchet
sense) of mapping f : X → Y in terms of a contingent of its graph. We also give a geometric
condition for a mapping to be locally Lipschitz.

Let two mappings f : R→ Y , g : R→ Y be given. Assume that the contingent of their graphs
are known. What can we say about the contingent of the graph of the sum f + g? The answer
depends on whether Y is finite-dimensional or not.
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Marta Walczyńska Embeddability properties of metrizable scattered spaces

In 2005 Gillam in his paper considered dimensional types (in the sense of Fréchet) of countable
metrizable spaces. The purpose of our study is to generalize some of his results. If additionally
the space is compact then Mazurkiewicz and Siepiński indicated the smallest ordinal number
into which one can embed it. But for any countable scattered metrizable space a similar ordinal
is not explicitly described. We determined these ordinals.

Renata Wiertelak Comparison of density topologies generated by sequences of intervals ten-
ding to zero

Let R be the set of real numbers, N the set of natural numbers and L the family of Lebesgue
measurable subsets of R. By λ(A) we shall denote the Lebesgue measure of a measurable set A
and by |I| the length of an interval I .

Let 〈s〉 = {sn}n∈N be an unbounded and nondecreasing sequences of natural numbers. We
shall say that a point x0 ∈ R is an 〈s〉–density point of a Lebesgue measurable set A if

lim
n→∞

λ
(
A ∩

[
x0 − 1

sn
, x0 + 1

sn

])
2
sn

= 1.

If A ∈ L, then we denote

Φ〈s〉(A) = {x ∈ R : x is a 〈s〉-density point of A}.
Then Φ〈s〉 : L → L is a lower density operator and the family

T〈s〉 = {A ∈ L : A ⊂ Φ〈s〉(A)}
is a topology on R containing density topology Td (see [3]).

In the paper [4] is presented generalization of notion of 〈s〉–density point. Let J = {Jn}n∈N
be a sequence of closed intervals tending to zero. It means that diam{{0} ∪ Jn} −→

n→∞
0.

We shall say that a point x0 ∈ R is a J –density point of a set A ∈ L, if

lim
n→∞

λ(A ∩ (Jn + x0))

|Jn|
= 1.

Let
ΦJ (A) = {x ∈ R : x is a J -density point of A}.

Then ΦJ : L → L is an almost lower density operator and the family

TJ = {A ∈ L : A ⊂ ΦJ (A)}
is a topology containing natural topology.
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The aim of the presentation is to provide the conditions for inclusion between density type
topologies.
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Julia Wódka Products of Świątkowski and quasi-continuous functions
Joint work with Aleksander Maliszewski.

Let X ⊂ R and f : X → R.
• We say that f is Świątkowski if for all a < b with f(a) 6= f(b), there is a y between f(a)

and f(b) and an continuity point x ∈ (a, b) such that f(x) = y.
• We say that f is strong Świątkowski if for all a < b and each y between f(a) and f(b),

there is a continuity point x ∈ (a, b) with f(x) = y.
• We say that f is quasi-continuous, if for all a < x < b and each ε > 0 there is a

nondegenerate interval I ⊂ (a, b) such that diam f [I ∪ {x}] < ε.
• We say that f is cliquish, if for all a < b and each ε > 0 there is a nondegenerate interval
I ⊂ (a, b) such that diam f [I] < ε.

The set A ⊂ R is simply open if it is the union of an open set and a nowhere dense set.
The purpose of this talk is to present the characterization of products of Świątkowski functions

and products of Świątkowski and quasi-continuous functions.

THEOREM. Let f : R→ R. The following are equivalent:

(i) there are an n ∈ N and quasi-continuous or Świątkowski functions g1, . . . , gn such that
f = g1 . . . gn on R,

(ii) f is cliquish and the set f−1(0) is simply open,
(iii) there are strong Świątkowski function g and Świątkowski function h such that f = gh

on R,
(iv) there are quasi-continuous and Świątkowski functions g and h such that f = gh on R,
(v) there are quasi-continuous function g and Świątkowski function h such that f = gh on R,

(vi) there are quasi-continuous functions g and h such that f = gh on R.
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[2] A. Maliszewski, J. Wódka, Products of Świątkowski functions, Math. Slovaca (to appear).
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Luděk Zajíček Differences of two semiconvex functions

The talk is based on a joint work with V. Kryštof (in preparation). It is proved that real functi-
ons on R which can be represented as the difference of two semiconvex functions with a ge-
neral modulus (or of two lower C1-functions, or of two strongly paraconvex functions) coin-
cide with semismooth functions on R (i.e. those locally Lipschitz functions on R for which
f ′+(x) = limt→x+ f

′
+(t) and f ′−(x) = limt→x− f

′
−(t) for each x). Further, for each modulus ω,

we characterise the class DSCω of functions on R which can be written as f = g − h, where g
and h are semiconvex with modulus C1ω for some C1 > 0 as the class of f which are continuous
and f ′+ exists and has locally finite [C2ω]-variation for some C2 > 0. The research was motivated
by recent article by J. Duda and L. Zajíček on Gâteaux differentiability of semiconvex functions,
in which surfaces described by differences of two semiconvex functions naturally appear.

Rafał Zduńczyk Simple systems and closure operators

The connections between (1) generalized derived-set operators, (2) generalized and standard
topologies and (3) generalized Thomson’s local systems are examined.
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Šimon Franěk, Pace University, New York, USA, simon@simonfranek.com
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Mikuláš Zindulka Gymnázium, Plzeň, Mikulášské nám. 23, Jagellonská 18, 301 00, Plzeň,
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